

Agenda

- Overview aquatic ecosystems
- Characteristics of aquatic ecosystems
 - Rivers, creeks, brooklets,
 - lakes, lagoons,
 - canals, trenches
- Species diversity and data collection
- Threats to aquatic ecosystems
 - Pollution
 - Brokopondo Lake
 - Gold mining
 - Sewage

Fields of aquatic ecosystems

- LIMNOLOGY: the study of inland waters, as ecological systems interacting with their drainage basins and the atmosphere.
 - stationary water bodies
 - running waters
 - groundwater
- HYDROLOGY: the science that encompasses the occurrence, distribution, movement and properties of water and their relationship with the environment within each phase of the hydrologic cycle
 - Limnology
 - Oceanology
- ECOLOGY: the study of the relationships between organisms and their physical environment
 - abiotic = physical-chemical characteristics
 - biotic = biotic characteristics

Overview aquatic ecosystems of Suriname

- Running waters
 - Freshwater streams (Rivers, Creeks and Brooklets)
 - Oceans
 - Canals and trenches
- Stagnant/open waters
 - Lakes and Lagoons
- Wetlands
 - Swamps and Swamp forests

Aquatic ecosystems

- Freshwater streams (brooklets, creeks, rivers)
- Lakes (natural and man-made)
- Underground reservoirs (freshwater)
- Freshwater swamps
- Puddles, pools, water-holes, etc.
- Canals, trenches (man-made)
- Mangrove swamps (brackish)
- Lagoons (brackish)
- Estuaries (brackish)
- Ocean (saline)

Characteristics of aquatic ecosystems

Freshwater streams

- Running waters
- Unidirectional
- Brooklets, Creek and Rivers
- Water types of Suriname
 - Clear water from interior
 - Black water
 - (White water)
- River continuum theory
- Turbidity and nutrients increase towards the coast (sediment, intrusion by sea at high tide)

Brooklets

Brooklets

Upstream brooklets

- High altitudinal gradient
- Swift current
- Usually, a solid rocky bottom
- Clear water with few nutrients
- High amount of dissolved oxygen
- Organisms specialized for life in swift current
- Usually good drinking water, but limited in supply

Lowland brooklets

- Low altitudinal gradient
- Slow to hardly any current
- Usually, a sandy bottom
- Clear water with few nutrients
- Low to high amount of dissolved oxygen
- Low to intermediate diversity
- Not very good for drinking water
- Sometimes high in humic acids

Rivers and creeks

Rivers and creeks

Rivers in Interior

- Varying intermediate to high altitudinal gradient and current
- Bottom sediment rocky to sandy
- Water clear to slightly turbid
- Few nutrients
- High in dissolved oxygen
- High biodiversity: specialized organisms and generalists
- Often suitable drinking water, but prone to pollution

Rivers in coastal plain

- Low altitudinal gradient and low current, near coast tidal zone
- Bottom sediment clayish
- Water slightly/very turbid
- Medium to high in nutrients
- Medium in dissolved oxygen
- Low biodiversity: mostly generalists, freshwater + brackish water
- Not suitable as drinking water, due to many human activities, prone to pollution

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

River continuum theory

Clear waters

- Clear water from interior
 - High DO, high visibility, low nutrients, low conductivity
 - Adapted aquatic life relies on allochthonous nutrients from land

Black waters

- Black water from savanna belt and from sandstone (Tafelberg) with humic acids
 - Dark ("Coca cola") color, low visibility, very low DO
 - Aquatic life is adapted to low DO

White waters

- White water from Amazon river/Andes;
 - Erosion water from Amazon visible at the coast
- In Suriname, white waters as a result of heavy rain fall or pollution

Canals and Trenches

- Man-made for supply and disposal of water.
- Often polluted
 - Run off from industries (Saramacca kanaal)
 - In urban areas connected with sewage system
 - Household waste
- Overload of nutrients can result in explosive vegetation growth, stagnation and flooding

Lakes and Man-made reservoirs

Lakes

- Few natural lakes, man-made Brokopondo Lake
 - No gradient and hardly any current
 - Bottom sediment sandy to clayish
 - Water clear to slightly turbid
 - Intermediate nutrients
 - Natural accumulation of heavy metals
 - Intermediate in dissolved oxygen
 - Some generalists remaining, low biodiversity
 - Not very good drinking water, polluted with mercury

Swamps and swamp forests

Swamps and Swamp forests

- Water usually stagnant
- Open and forested areas with (natural) seasonal flooding
- Most abundant in the coastal plains, also occurring in Savanna Belt and Interior
- Often with high concentration of humic acids (clear/black water)
- Bottom sediment clayish with plant material
- Low to high amount of nutrients
- Low to high in dissolved oxygen
- Important habitats for fish reproduction, therefore important for food

Aquatic fauna of Suriname

Data collection of aquatic biodiversity

Aquatic biodiversity sampling methods

Threats to aquatic ecosystems

Types of threats

- Water pollution
- Man-made reservoirs
- Mining
- Nutrients
- Climate change

Types of water pollution

- Urban pollution
 - Sewage: nutrients, bacteria
 - Household waste
- Agricultural pollution
 - Pesticides
 - Fertilizers
- Industrial pollution
 - Heavy metals
 - Oils (PCB, PAK)
- Mining
 - Cyanide
 - Mercury
 - Turbidity
 - Nutrients
 - Caustic soda

Water pollution

Brokopondo Hydropower Lake

Forest decomposition

Explosive water hyacinth growth

Impact Brokopondo hydropower dam on fish fauna

Fish diversity Brokopondo Lake

Mol et al., 2007

Mining

Turbidity

Turbidity from gold mining at confluence Goliath Creek and Boven-Coesewijne River, BCNR

Turbidity from gold mining at Brokopondo Hydropower Lake

Witti Creek

Moeder Creek

Ancistrus sp.

Impact of turbidity on biodiversity

- Water transparency low
 → visually foraging fish
 disappear; increase of
 knife fish and certain
 catfish
- Substratum covered by sediment -> reproduction of certain species decreases
- Worst case scenario: extermination of all macro-life

Fish species clean creek vs polluted creek

Mol & Ouboter, 2004

Mercury levels in piscivorous fish

Ouboter et al, 2012

Dark gray bar: threshold mercury in fish for human consumption

Yellow bar: measurements upstream of gold mining

Red/Orange: measurements in rivers and lakes in Greenstone belt

Brown bar: measurements downstream gold mining areas

Green bar: measurements in Coeroeni, Sipaliwini and Zuid river

Black bar: measure in Kabalebo river

Blue bar: Upper Coppename and Saramacca river

Hypothesis of high mercury levels in pristine areas is proven through Hg Isotopes

Impact of biologically available mercury

- US EPA calculated a wildlife criterion for total mercury in freshwater: $0.01 \, \mu g/L$
- Most freshwater in Suriname is likely above this norm
- Highest levels in fish measured in Brokopondo Lake and Coppename River
- Wildlife likely to be affected:
 - Giant otter & Neotropical otter
 - Herons, Cormorans (duikelaars) & Kingfishers
 - Caimans & Freshwater turtles
 - Jaguars?

Caustic soda

- Used in Alumina (bauxite) industry
- Spill of caustic soda at Suralco plant at Paranam
- Impacts on surrounding swamp, Topibo swamp
 - Increased pH >11
 - Palustrine vegetation disappeared
 - Aquatic fauna diversity changed
 - Only few species adapted to new circumstances
 - Swamp visited by coastal birds (skimmers, snipes)

Figure 2. Aerial photograph of the Topibo area (photograph by Centraal Bureau Luchtkartering Paramaribo).

Cyanide

- Used in gold mining (small and large scale)
- Kept in solution in LS mining at pH >11
- Degrades under sunlight into relatively harmless molecules (e.g. NH₃ en HCO₃-, CO₂)
- Deadly for most aquatic life
- In case of accident may become deadly for terrestrial fauna, including humans
 - (CN binds with red blood cells, suffocation)

Cyanide

- *Malone et al., 2023*
 - Cyanide application is becoming more popular in smallscale gold mining
 - Often used in combination with mercury
 - HgCN increases mobility of mercury, increasing mercury pollution
- Cyanide is more efficient than mercury in processing gold. This may inspire miners to extent their activities to areas with lower deposits of gold

Nutrients

Nutrients in aquatic ecosystems

- Nutrients from:
 - Erosion
 - Churning of soil (mining, logging, agriculture)
 - Sewage
 - Fertilizers (agriculture)

Eutrophication

Eutrophication

Impacts:

- Eutrophication
 - Algae bloom
 - Decrease in DO
 - Decrease of water visibility
 - Fish mortality >>
 - Simplification of the ecosystem and dominance of specific species

Sewage

High abundance of fecal matter (E. coli bacteria or other pathogens)

Solutions

- Catchment area protection
- Wastewater treatment systems
- Sustainable energy production
- Stricter mining regulations and control
- Alternative mercury-free and turbidity-limiting methods for gold mining
- Water quality regulations for industry and recreational water

Solutions

- Enforcement of pesticide regulations
- Proper recycling and/or disposal of waste (plastic bags, batteries, hazardous chemicals, medicines).
- Awareness for farmers and the general public
- EIA's incl. biodiversity
- Prepare for climate change
- Research

Catchment area protection

- Protect upstream areas of all major rivers
 - Prohibit mining, forestry, industries
- Promote nondestructive practices e.g., ecotourism
- Special regulations for local communities (e.g., HKV's)

Sustainable energy production

Hydroelectric power generation

Sustainable energy production

- Promote actual green energy production
- Prevent pollution from oil and gas industry e.g., offshore
- Prohibit creation of hydro-electric lakes, unless
 - Efficiency in relation to megawatts/km²
 - Transmigration of communities only with full consent
 - Exclude areas with endemic or endangered species
 - Clearance of all vegetation beforehand
 - Rescue operation for drowning animals
 - Use oxygen increasing structure

Stricter mining regulations and control

- Regulations regarding hydrology, erosion and forest clearing
- Protection of biodiversity hotspots in concessions
- Ban hunting and logging in mining concessions
- "Wildlife bridges" for roads
- Mandatory use of tailing ponds
- Environmental monitoring
- Mine closure plan
- Ban the use of mercury
- Organization and training of small-scale gold miners

Research

- Continue research on:
 - Mercury pollution in freshwater and marine environment and local communities
 - Impacts of climate change
 - Pesticide residues in vegetables and in relation to health issues in Suriname
 - Impacts turbidity in various streams

References and additional literature

- Haripersad-Makhanlal, A. & **Ouboter**, P.E. (1993): Limnology: physico-chemical parameters and phytoplankton composition. In: P.E. Ouboter (ed.), Freshwater Ecosystems of Suriname, pp. 53-75. Kluwer Academic Publishers, Dordrecht.
- Legg, E.D., P.E. **Ouboter** & M.A.P.Wright (2015): Small-scale gold mining related mercury contamination in the Guianas: a review. WWF Guianas report.
- Malone, A., L. Figueroa, W. Wang, N.M. Smith, J.F. Ranville, D.C. Vuono, F.D. Alejo Zapata, L. Morales Paredes, J.O. Sharp & C. Bellona, 2023.
 Transitional dynamics from mercury to cyanide-based processing in artisanal and small-scale gold mining: Social, economic, geochemical, and environmental considerations. Science of the Total Environment 2023. https://doi.org/10.1016/j.scitotenv.2023.165492
- Mol, J.H., B. de Merona, P.E. **Ouboter** & S Sahdew (2007): The fish fauna of Brokopondo Reservoir, Suriname, during 40 years of impoundment. Neotropical Ichthyology 5(3): 351-368.
- Mol, J.H.A. & P.E. **Ouboter** (2004): Downstream Effects of Erosion from Small-Scale Gold Mining on the Instream Habitat and Fish Community of a Small Neotropical Rainforest Stream. Conserv. Biol. 18(1): 201-214.
- **Ouboter**, P.E. (1993): Part 1: Basic features. In: P.E. Ouboter (ed.), The Freshwater Ecosystems of Suriname, pp. 7-12. Kluwer Academic Publishers Dordrecht.
- **Ouboter**, P.E. & De Dijn, B.P. (1993): Changes in a polluted swamp. In: P.E. Ouboter (ed.), The Freshwater Ecosystems of Suriname, pp. 239-260. Kluwer Academic Publishers, Dordrecht.
- Ouboter, P.E., G. Landburg, J. Quik, J. Mol & F. v.d. Lugt (2012). Mercury Levels in Pristine and Gold Mining Impacted Aquatic Ecosystems of Suriname, South America. Ambio 41(8): 873-882.
- Ouboter, P.E., G.A. Landburg, G.U. Satnarain, S.Y. Starke, I. Nanden, B. Simon-Friedt, W.B. Hawkins, R. Taylor, M.Y. Lichtveld, W. Zijlmans, E. Harville, S. Drury & J. K. Wickliffe (2018). Mercury levels in women and children from interior villages in Suriname. Int. J. Environ. Res. Public Health 15, 1007: 1-13.
- Wickliffe, J., M. Lichtveld, W.C.W.R. Zijlmans, S. MacDonald-Ottevanger, M. Shafer, C. Dahman, E. Harville, S.S. Drury, G.A. Landburg & P.E.
 Ouboter (2020). Exposure to total and methylmercury among pregnant women in Suriname: sources and public health implications. Journal of Exposure Science and Environmental Epidemiology. DOI: 10.1038/s41370-020-0233-3
- Wickliffe, J.K, Lichtveld, M.Y., Zijlmans, C.W., MacDonald-Ottevanger, S., Shafer, M., Dahman, C., Harville, E.W., Drury, S., Landburg, G. & **Ouboter**, P.E. (2021). Exposure to total and methylmercury among pregnant women in Suriname: sources and public health implications. Journal of exposure science & environmental epidemiology 31(1): 117-125.

